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Photons and Gravitons in S-Matrix Theory: Derivation of Charge Conservation 
and Equality of Gravitational and Inertial Mass* 
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We give a purely S-matrix-theoretic proof of the conservation of charge (defined by the strength of soft 
photon interactions) and the equality of gravitational and inertial mass. Our only assumptions are the Lor-
entz invariance and pole structure of the S matrix, and the zero mass and spins 1 and 2 of the photon and 
graviton. We also prove that Lorentz invariance alone requires the S matrix for emission of a massless 
particle of arbitrary integer spin to satisfy a "mass-shell gauge invariance" condition, and we explain why 
there are no macroscopic fields corresponding to particles of spin 3 or higher. 

I. INTRODUCTION 

IT is not yet clear whether field theory will continue 
to play a role in particle physics, or whether it will 

ultimately be supplanted by a pure ^-matrix theory. 
However, most physicists would probably agree that 
the place of local fields is nowhere so secure as in the 
theory of photons and gravitons, whose properties seem 
indissolubly linked with the space-time concepts of 
gauge invariance (of the second kind) and/or Einstein's 
equivalence principle. 

The purpose of this article is to bring into question 
the need for field theory in understanding electro-
magnetism and gravitation. We shall show that there 
are no general properties of photons and gravitons, 
which have been explained by field theory, which cannot 
also be understood as consequences of the Lorentz 
invariance and pole structure of the S matrix for mass-
less particles of spin 1 or 2.1 We will also show why there 
can be no macroscopic fields whose quanta carry spin 3 
or higher. 

What are the special properties of the photon or 
graviton S matrix, which might be supposed to reflect 
specifically field-theoretic assumptions? Of course, the 
usual version of gauge invariance and the equivalence 
principle cannot even be stated, much less proved, in 
terms of the S matrix alone. (We decline to turn on 
external fields.) But there are two striking properties of 
the S matrix which seem to require the assumption of 
gauge invariance and the equivalence principle: 

(1) The S matrix for emission of a photon or graviton 
can be written as the product of a polarization "vector" 
eM or "tensor" eV with a covariant vector or tensor 
amplitude, and it vanishes if any €M is replaced by the 
photon or graviton momentum q*. 

(2) Charge, defined dynamically by the strength of 
soft-photon interactions, is additively conserved in all 
reactions. Gravitational mass, defined by the strength 
of soft graviton interactions, is equal to inertial mass 

* Research supported by the U. S. Air Force Office of Scientific 
Research, Grant No. AF-AFOSR-232-63. 

t Alfred P. Sloan Foundation Fellow. 
1 Some of the material of this article was discussed briefly in a 

recent letter [S. Weinberg Phys. Letters 9, 357 (1964)]. We will 
repeat a few points here, in order that the present article be 
completely self-contained. 

for all nonrelativistic particles (and is twice the total 
energy for relativistic or massless particles). 

Property (1) is actually a straightforward conse­
quence of the well-known2,3 Lorentz transformation 
properties of massless particle states, and is proven in 
Sec. I I for massless particles of arbitrary integer spin. 
(It has already been proven for photons by D. 
Zwanziger.4) 

Property (2) does not at first sight appear to be 
derivable from property (1). Even in field theory (1) 
does not prove that the photon and graviton "currents" 
J^x) and 0M„(#) are conserved, but only that their 
matrix elements are conserved for light-like momentum 
transfer, so we cannot use the usual argument that 
SdzxP{po) and J%dzx6°'J'(x) are time-independent. And 
in pure 5-matrix theory it is not even possible to define 
what we mean by the operators J^ix) and 0M"(#). 

We overcome these obstacles by a trick, which re­
places the operator calculus of field theory with a little 
simple polology. After defining charge and gravitational 
mass as soft photon and graviton coupling constants in 
Sec. I l l , we prove in Sec. IV that if a reaction violates 
charge conservation, then the same process with inner 
bremsstrahlung of a soft extra photon would have an 
S matrix which does not satisfy property (1), and hence 
would not be Lorentz invariant; similarly, the inner 
bremstrahlung of a soft graviton would violate Lorentz 
invariance if any particle taking part in the reaction 
has an anomalous ratio of gravitational to inertial mass. 

Appendices A, B, and C are devoted to some technical 
problems: (A) the transformation properties of polariza­
tion vectors, (B) the construction of tensor amplitudes 
for massless particles of general integer spin, and (C) the 
presence of kinematic singularities in the conventional 
(2j+l)-component "M functions." 

A word may be needed about our use of 5-matrix 
theory for particles of zero mass. We do not know 
whether it will ever be possible to formulate 5-matrix 

2 E. P. Wigner, in Theoretical Physics (International Atomic 
Energy Agency, Vienna, 1963), p. 59. We have repeated Wigner's 
work in Ref. 3. 

3 S. Weinberg, Phys. Rev. 134, B882 (1964). 
4 D . Zwanziger, Phys. Rev. 113, B1036 (1964). Zwanziger 

omits some straightforward details, which are presented here in 
Appendix B. 
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theory as a complete dynamical theory even for strong 
interactions alone, and the presence of massless particles 
will certainly add a formidable technical difficulty, since 
every pole sits at the beginning of an infinite number of 
branch cuts. All such "infrared" problems are outside 
the scope of the present work. We shall simply make 
believe that there does exist an S-matrix theory, and 
that one of its consequences is that the S matrix has 
the same poles that it has in perturbation theory, with 
residues that factor in the same way as in perturbation 
theory. (We will lapse into the language of Feynman 
diagrams when we do our 2w bookkeeping in Sec. IV, 
but the reader will recognize in this the effects of our 
childhood training, rather than any essential dependence 
on field theory.) 

When we refer to the "photon" or the "graviton" in 
this article, we assume no properties beyond their zero 
mass and spin 1 or 2. We will not attempt to explain why 
there should exist such massless particles, but may guess 
from perturbation theory that zero mass has a special 
kind of dynamical self-consistency for spins 1 and 2, 
which it would not have for spin 0. 

Most of our work in the present article has a counter­
part in Feynman-Dyson perturbation theory. In a 
future paper we will show how the Lorentz invariance 
of the S matrix forces the coupling of the photon and 
graviton "potentials" to take the same form as required 
by gauge invariance and the equivalence principle. 

II. TENSOR AMPLITUDES FOR MASSLESS 
PARTICLES OF INTEGER SPIN 

Let us consider a process in which a massless particle 
is emitted with momentum q and helicity zLj. We shall 
call the S-matrix element simply S±/(q,/>), letting p stand 
for the momenta and helicities of all other particles 
participating in the reaction. The Lorentz transforma­
tion property of 5 can be inferred from the well-known 
transformation law for one-particle states2; we find that 

Xexp[±;y0(q,A)]S± i(Aq,A^). (2.1) 

The angle © is given in Appendix A as a function of the 
momentum q and the Lorentz transformation AM„. 

We prove in Appendix B that, in consequence of 
(2.1), it is always possible for integer j to write 5±y as 
the scalar product of a "polarization tensor" and what 
Stapp5 would call an "M function": 

5 ± y(q ,# )=(2 |q | ) - 1 /V 1 *(Q) - - -

Xe±w*(q)if±Ml...M/(q,#) (2.2) 

with M a symmetric tensor,6 in the sense that 

jkf ± w ~M(q,p)=:An
n • • • A,f>'M ±v>" * 'v>'(Aq,Ap). (2.3) 

5M functions for massive particles were introduced by H. 
Stapp, Phys. Rev. 125, 2139 (1962). See also A. O. Barut, I. 
Muzinich, and D. N. Williams, Phys. Rev. 130, 442 (1963). 

6 We use a real metric, with signature {.+ + + — }• Indices are 
raised and lowered in the usual way. The inverse of the Lorentz 
transformation A>*„ is [A"1]'*,—AA 

The polarization e^iq) is defined by 

*±»(q)^my*±v, (2.4) 
where R(q) is a standard rotation that carries the z axis 
into the direction of q, and e±^ is the polarization for 
momentum in the z direction: 

€ ± M = { l , ± i , 0 , 0 } / v 2 . (2.5) 

Some properties of e^ig) are obvious: 

e±^(i)e^(q) = l, (2.6) 

e±M*±*(4) = 0, (2.7) 

«d/*Gfl = €**($), (2.8) 

«±°($) = 0 , (2.9) 

q^(q) = 0, (2.10) 

E ± ^ ( g ) € ± ^ ( g ) - n ^ ( g ) ^ ^ + ( g Y + § T ) / | q | 2 , 
Cr- { -q , |q | } ] , (2.H) 

= | { n^1"1 (q) IP2"2 (g)+IP1"2 (q) IP2"1 (q) 

- n ^ 2 ( g ) n ^ 2 ( ^ ) } . (2.12) 

We also note the very important transformation rule, 
proved in Appendix A, 

( A / - # V / | q | ) € ± ' ( A 0 ^ 

with © the same angle as in (2.1). 
If it were not for the q" term in (2.13), the polarization 

"tensor" ej/1- • -e-j/> would be a true tensor, and the 
tensor transformation law (2.3) for M±

U1'"^' would be 
sufficient to ensure the correct behavior (2.1) of the 
S matrix. But e^ is not a vector,7 and (2.3) and (2.13) 
give the S-matrix transformation rule 

S±,(q,p) = (21q|r1'2 exp{±i/0(q,A)} 
Xte±"(Aq)-(AqyiAA±>(Aq)/\q\J- • • 
x [e±"(A$) - (Aff)«A,v(A$y I q I ]* 

XM±„3.(Aq,Ap). (2.14); 
For an infinitesimal Lorentz transformation Atx

v=dti
p 

+co/*„, we can use (2.2) and the symmetry of M to put 
(2.14) in the form 

^ • ( q ^ ) = ( | A q | / | q | ) 1 / 2 e x p { ± i i 0 ( q , A ) } 5 ± y ( A q , A ^ ) 

-i(2kl3)-1/2(^v*(g))^e^2*(g). • • 
Xe±v*(q)M±,^M>P)- (2-15) 

Hence the necessary and sufficient condition that (2.14) 
agree with the correct Lorentz transformation property 
(2.1), is that 5± vanish when one of the e±

M is replaced 
with q»: 

q^e±M*(q)" •€±»*($M±,>v..ltfap) = 0. (2.16) 

For j ~ 1 this may be expressed as the conservation 
7 The transformation rule (2.13) shows that c±^(§) transforms 

according to one of the infinite-dimensional representations of the 
Lorentz group discussed by V. Bargmann and E. P. Wigner, 
Proc. Natl. Acad. Sci. 34, 211 (1948). 
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condition 

q,M^(q,p) = 0. (2.17) 

For 7 = 2 we conclude that 

qjt*r(&p)*f. (2.18) 
However, (2.7) shows that the subtraction of a term 
proportional to g" from M±'w will not alter the S matrix 
(2.2), so M^v can always be denned in such a way that 
(2.18) becomes 

qfiM^(q,p) = 0. (2.19) 

The condition (2.16) may look empty, since it can 
always be satisfied by a suitable adjustment of 
j|f±0M-••#*/, which in light of (2.9) will have no effect on 
the S matrix. But we cannot play with the time-like 
components of M^J11'"^ and still keep it a tensor in the 
sense of (2.3). Neither (2.3) nor (2.16) is alone sufficient 
for Lorentz invariance, and together they constitute a 
nontrivial condition on M^1'"^. 

Condition (2.16) may, if we wish, be described as 
"mass-shell gauge invariance," because it implies that 
the S matrix is invariant under a regauging of the 
polarization vector 

<±*(<?)-^±"(<?)+x±(q)<z*, (2.20) 

with X±(q) arbitrary. I t was purely for convenience 
that we started with the "Coulomb gauge" in (2.4), 
(2.5). [However, the theorem in Sec. I l l of Ref. 3 shows 
that it is not possible to construct an e±^(g) which would 
satisfy (2.13) without any q11 term.] 

The S matrix for emission and absorption of several 
massless particles can be treated in the same way, 
except that €"* is replaced by eM when a massless particle 
is absorbed. 

III. DYNAMIC DEFINITION OF CHARGE 
AND GRAVITATIONAL MASS 

We are going to define the charge and gravitational 
mass of a particle as its coupling constants to very-low-
energy photons and gravitons, with "coupling constant" 
understood in the same sense as the Watson-Lepore 
pion-nucleon coupling constant. In general, such defini­
tions are based on the fact that the S matrix has poles, 
corresponding to Feynman diagrams in which a virtual 
particle is exchanged between two sets of A and B of 
incoming and outgoing particles, with four-momentum 
nearly on its mass shell. The residue at the pole factors 
into TA and TB, the two "vertex amplitudes" TA and 
TB depending respectively only upon the quantum 
numbers of the particles in sets A and By and of the 
exchanged particle. Hence it is possible to give a purely 
S-matrix-theoretic definition of the vertex amplitude T 
for any set of physical particles, as a function of their 
momenta and helicities; the coupling constant or con­
stants define the magnitude of T. (As discussed in the 
introduction, we will not be concerned in this article 
with whether the above remarks can be proven rigor­
ously in 5-matrix theories involving massless particles, 

or with the related question of whether m=0 poles can 
really be separated from the branch cuts on which they 
lie. Our purpose is to explore the implications of the 
generally accepted ideas about the pole structure.) 

Let us first consider the vertex amplitude for a very-
low-energy massless particle of integer helicity zkj, 
emitted by a particle of spin 7 = 0 , mass m (perhaps 
zero), and momentum ^ / x={p,E}, with E— (p2+w2)1 / 2 . 
(We are restricting ourselves here to very soft photons 
and gravitons, because we only want to define the 
charge and gravitational mass, and not the other electro­
magnetic and gravitational multipole moments.) The 
only tensor which can be used to form Af±M1,"M' is 
pn.. .pN £note that terms involving g^' do not con­
tribute to the S matrix, because of (2.7)] so the tensor 
character of M^1'"^' dictates the form of the vertex 
amplitude as 

A..- • -Pn**"1*®- • •«±«*($)/2£(p)(2|q|)1 '*. (3.1) 

If the emitting particle has spin / > 0 , with initial and 
final helicities cr and <rf then (3.1) still gives a tensor M 
function if we multiply it by 5™*; this is because the unit 
matrix has the Lorentz transformation property 

« ^ ^ / > « - ( / ) ( p ^ ) Z > ^ ^ C J ) * ( p A ) ^ ^ - = « ^ , (3.2) 

where Z>(J)(p,A) is the unitary spin-/ representation of 
the Wigner rotation8 (or its analog,2 if m—G) associated 
with momentum p and Lorentz transformation A. How­
ever, the vertex amplitude so obtained is not unique. 
For instance if J—\ and m>0 then we get (3.1) times 
ba(T' if we use a "current"9 

${ynPn'''^^permutations}*/', (3.3) 

while using y5yM in place of 7M would give a helicity-flip 
vertex amplitude. 

At the end of the next section we will see that these 
other possibilities are prohibited by the Lorentz in­
variance of the total S matrix. Indeed, the only allowed 
vertex functions for soft massless particles of spin j are 
of the form (3.1) times ba<X' for j=l and j= 2 (and none 
at all for j^z 3). We may therefore define the soft photon 
coupling constant e, by the statement that the j—l 
vertex amplitude is10 

2ie(2irybff(f>p^*(q) 

; ( 2 ^ / 2 [ 2 E ( p ) ] ( 2 | q | ) ^ , ( 3 ' 4 ) 

8 E . P. Wigner, Ann. Math. 40, 149 (1939). For a review, see 
S. Weinberg, Phys. Rev. 133, B1318 (1964). 

gFor j= 2, see I. Y. Kobsarev and L. B. Okun, Dubna 
(unpublished). 

10 Proper Lorentz invariance alone would allow different charges 
e± for photon helicities ± 1 . Parity conservation would normally 
require that e+ = e_ (with an appropriate convention for the photon 
parity). However if space inversion takes some particle into its 
antiparticle then its "right charge" e+ will be equal to the "left 
charge" £_ of its antiparticle, and we will see in the next section 
that this gives e+ = e_= — e_. In this case we speak of a magnetic 
monopole rather than a charge. The same conclusions can be 
drawn from CP conservation. We will not consider magnetic 
monopoles in this paper, though in fact none of our work in Sec. IV 
will depend on any relation between e+ and e_. Time-reversal 
invariance allows us to take e as real. 
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the factors 2, i, and T being separated from e in obedi­
ence to convention. And in the same way we may define 
a "gravitational charge" / , by the statement that the 
j—2 vertex amplitude is11 

2if(%TrGyi2(2>irybaa>{p»e±»*{ 

(2T)«/»[2E(p)](2|q|) 1/2 
(3.5) 

the extra factor ( 8 T G ) 1 / 2 (where G is Newton's constant) 
being inserted to make / dimensionless. 

In order to see how e and / are related to the usual 
charge and gravitational mss, let us consider the near 
forward scattering of two particles with masses ma and 
Mb, spins Ja and /&, photon coupling constants ea and eb, 
and graviton coupling constants fa and fb. As the in­
variant momentum transfer t= — (pa—pa')2 goes to 
zero, the 5 matrix becomes dominated by its one-
photon-exchange and one-graviton-exchange poles. An 
elementary calculation12 using (2.11) and (2.12) shows 
that for t —> 0, the 5 matrix becomes 

4ir2EaEbt 
£eaeb(pa'pb) 

+87rGfafb{(Pa'Pb)
2-fna2mh*/2}-]. (3.6) 

If particle b is at rest, this gives 

+Gfa\ 2Ea \fbmh . (3.7) 

Hence we may identify ea as the charge of particle a, 
while its effective gravitational mass is 

ma = fa{2Ea-(ma
2/Ea)}. (3.8) 

If particle a is nonrelativistic, then Ea=ma, and (3.8) 
gives its gravitational rest mass as 

ma=fama. (3.9) 
11 Proper Lorentz invariance alone would not rule out different 

values for the gravitational charges f± for gravitons of helicity ± 2 . 
Parity conservation (with an appropriate convention for the 
graviton parity) requires that /+ = /_. This conclusion holds even 
for the magnetic monopole case discussed in footnote 10, since 
then /+ = /_, and we will see in Sec. IV that the antiparticle has 
"left gravitational charge" /_ equal to /_. The same conclusions 
can be drawn from CP conservation. Time-reversal invariance 
allows us to take / as real. 

12 The residue of the pole at 2 = 0 can be most easily calculated by 
adopting a coordinate system in which q^pa'—pa = pb—pb> is a 
finite real light-like four-vector, while pa, pb, pa', pb> are on their 
mass shells, and hence necessarily complex. Then the gradient 
terms in (2.11) and (2.12) do not contribute, because q-pa — q-pb 
= 0, so that IIM„ may be replaced by gM„, yielding (3.6). We are 
justified in using (3.6) in the physical region (where pa, pb, pa', pb* 
are real and q is small, though not in the direction of the light cone) 
because Lorentz invariance tells us that the matrix element 
depends only upon s and /. Lorentz invariance is actually far from 
trivial in a perturbation theory based on physical photons and 
gravitons, since then the Coulomb force and Newtonian attraction 
must be explicitly introduced into the interaction in order to get 
the invariant S matrix (3.6). (Such a perturbation theory will be 
discussed in an article now in preparation.) The Lorentz-invariant 
extrapolation of (3.6) into the physical region of small / is the 
analog, in S-matrix theory, of the introduction of the Coulomb 
and Newton forces in perturbation theory. 

On the other hand, if a is massless or extremely rela-
tivistic, then E<^>yna and (3.8) gives 

ma=2faEa (3.10) 

[Formulas (3.8) or (3.10) should not of course be under­
stood to mean anything more than already stated in 
(3.7). However, they serve to remind us that the re­
sponse of a massless particle to a static gravitational 
field is finite, and proportional to / . ] 

The presence of massless particles in the initial or 
final state will also generate poles in the S matrix, 
which, like that in (3.7), lie on the edge of the physical 
region. I t is therefore possible to measure the coupling 
constants e and / in a variety of process, such as 
Thomson scattering or soft bremsstrahlung, or their 
analogs for gravitons. All these different experiments 
will give the same value for any given particle's e or / , 
for purely 5-matrix-theoretic reasons. The task before 
us is to show how the e's and / ' s are related for different 
particles. 

IV. CONSERVATION OF e AND UNIVERSALITY OF / 

Let S$a be the S matrix for some reaction «—>/?, the 
states a and £ consisting of various charged and un­
charged particles, perhaps including gravitons and 
photons. The same reaction can also occur with emission 
of a very soft extra photon or graviton of momentum 
q and helicity ± 1 , or ± 2 , and we will denote the corre­
sponding 5-matrix element as ^ ^ ( q ) or S/3a

±2(q). 
These emission matrix elements will have poles at 

q = 0 , corresponding to the Feynman diagrams in which 
the extra photon or graviton is emitted by one of the 
incoming or outgoing particles in states a or /?. The poles 
arise because the virtual particle line connecting the 
photon or graviton vertex with the rest of the diagram 
gives a vanishing denominator 

l/t(pn+q)2+tnn2l=l/2pn'q 

(particle n outgoing), 

i/L(pn-qy+mn^=-l/2pn'q 
(particle n incoming). 

For |q | sufficiently small, these poles will completely 
dominate the emission-matrix element. The singular 
factor (4.1) will be multiplied by a factor —i(2ir)~4: 

associated with the extra internal line, a factor 

(4.1) 

or 

2ie£pn-e±*m(2*y 

(27r)3 '2(2|q|)1 '2 

2if(8^Gy^pn-i±*(q)J(2Ty 

(21r)8 '2(2|q|) l/2 

(4.2) 

(4.3) 

arising from the vertices (3.4) or (3.5), and a factor Spa 

for the rest of the diagram. Hence the S matrix for soft 
photon or graviton emission is given in the limit 
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q - > 0 b y 1 3 - 1 5 

^ « d b l ( q ) - ^ ( 2 7 r ) - 3 / 2 ( 2 | q | ) - ^ 

X 2 Vne 
(Pn-q) 

\Spa (4.4) 

or 

*V± 2(q) -> (27r)-3/2(2|q|)-1/2(87rG)1/2 

lpwe±*(q)y 
X X W»~ 

(^n'tf) J 
\Spa > (4.5) 

the sign t]n being + 1 or —1 according to whether 
particle n is outgoing or incoming. 

These emission matrices are of the general form (2.2), 
i.e., 

•W^q) "> (21 q|)-1,2^\q)MM,«->£) , (4.6) 

S,a±
2(q) -> (21 q | ) ^ 2 6 ± ^ ( ^ ) 6 ^ ( g ) ^ ( q , « - > / * ) , (4.7) 

where Af„ and Af „, are tensor I f functions 

14>(q, a - > / ? ) = (2x)- 8 ' 2 [E iJ«e»#.V(#«-«)3S,,»«, (4.8) 

Jkf ""(q, a - * /?) = (2ir)-3/2(87rG) I / 2 

"XrEVnfnpn"pn'/(pn-q)']^fia. ( 4 . 9 ) 

However, we have learned in Sec. I I that the covariance 
of Mp and M M„ is not sufficient by itself to guarantee the 
Lorentz invariance of the 5 matrix; Lorentz invariance 
also requires the vanishing of (2.2) when any one e^iq) 
is replaced with q^. For photons this implies (2.17), i.e., 

0 = ^ ^ ( 4 a -> j8)= (2ir)-»/2CC Wn'lSpa, (4.10) 

so if Spa is not to vanish, the transition a—»/3 must 
conserve charge, with 

E i?„e»=0 . (4.11) 

For gravitons Lorentz invariance requires (2.18), which 
13 Formula (4.4) is well known to hold to all orders in quantum 

electrodynamic perturbation theory. See, for example, J. M. Jauch 
and F. Rohrlich, Theory of Photons and Electrons (Addison-
Wesley Publishing Company, Inc., Reading, Massachusetts, 
1955), p. 392, and F. E. Low, Ref. 14. 

14 It has been shown by F. E. Low, Phys. Rev. 110, 974 (1958), 
that the next term in an expansion of the S matrix in powers of 
|q| is uniquely determined by the electromagnetic multipole 
moments of the participating particles and by Spa. However, this 
next (zeroth-order) term is Lorentz-invariant for any values of the 
multipole moments. 

"Relations like (4.4) and (4.5) are also valid if 5i3«±1(q)j 
Spa

±2(q), and Spa are interpreted as the effective matrix elements 
for the transition a —> /3, respectively, with or without one extra 
soft photon or graviton of momentum q, plus any number of un­
observed soft photons or gravitons with total energy less than some 
small resolution AE. [For a proof in quantum-electrodynamic 
perturbation theory, see, for example, D. R. Yennie and H. Suura, 
Phys. Rev. 105, 1378 (1957). The same is undoubtedly true also 
for gravitons, and in pure 5-matrix theory. ~] 

here takes the simpler form (2.19) 

0=gMAf^(q,a->j8) 

= (27r)-3/2(87rG)1/2[E Vnfnpn'JPfia. (4.12) 
n 

But the pn11 are arbitrary four-momenta, subject only 
to the condition of energy momentum conservation: 

Zvnpn^O. (4.13) 
n 

The requirement that (4.12) vanish for all such p n , can 
be met if and only if all particles have the same gravita­
tional charge. The conventional definition of Newton's 
constant G is such as to make the common value of the 
/„ unity, so 

/ n = l (all») (4.14) 

and (3.8) then tells us that any particle with inertial 
mass m and energy E has effective gravitational mass 

m=2E-m2/E. (4.15) 

In particular, a particle at rest has gravitational mass 
m equal to its inertial mass m. 

I t seems worth emphasizing that our proof also 
applies when some particle n in the initial or final state 
is itself a graviton. Hence the graviton must emit and 
absorb single soft gravitons (and therefore respond to a 
uniform gravitational field) with gravitational mass IE. 
I t would be conceivable to have a universe in which all 
fn vanish, but since we know that soft gravitons interact 
with matter, they must also interact with gravitons. 

Having reached our goal, we may look back, and see 
that no other vertex amplitudes could have been used 
for q—>0 except (3.4) and (3.5). A helicity-flip or 
helicity-dependent vertex amplitude could never give 
rise to the cancellations between different poles [as in 
(4.10) and (4.12)] needed to satisfy the Lorentz in­
variance conditions (2.17) and (2.19). I t is also interest­
ing that such cancellations cannot occur for massless 
particles of integer spin higher than 2. For suppose we 
take the vertex amplitude for emission of a soft massless 
particle of helicity ± j ( j = 3 ,4 , •••) as 

2igM(2T)Ke±*(4)'py6**' 

(27r)^ 2 [2E(p)] (2 |q | )^ 

in analogy with (3.4) and (3.5), the S matrix Spa
±J'(q) 

for emission of this particle in a reaction a —> /3 will be 
given in the limit q —-> 0 by 

^ « ± 3 ' ( q ) ^ ( 2 x ) - 3 ' 2 ( 2 | q | ) - 1 / 2 

X [ E Vngn^LPn-e±*mi/(j>n-q)']S?a. ( 4 . 1 7 ) 
n 

This is only Lorentz invariant if it vanishes when any 
one e-i/ is replaced with q11, so we must have 

ZVngn^tPn-^m-^O. (4.18) 
n 

But there is no way that this can be satisfied for all 
momenta pn obeying (4.13), unless j=l or j=2. This 
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is not to say that massless particles of spin 3 or higher 
cannot exist, but only that they cannot interact at zero 
frequency, and hence cannot generate macroscopic 
fields. And similarly, the uniqueness of the vertex ampli­
tudes (3.4) and (3.5) does not show that electromag-
netism and gravitation conserve parity, but only that 
parity must be conserved by zero-frequency photons 
and gravitons. 

The crucial point in our proof is that the emission of 
soft photons or gravitons generates poles which in­
dividually make non-Lorentz-invariant contributions 
to the S matrix. Only the sum of the poles is Lorentz-
invariant, and then only if e is conserved and / is 
universal. Just as the universality of / can be expressed 
as the equality of gravitational and inertial mass, the 
conservation of e can be stated as the equality of charge 
defined dynamically, with a quantum number defined 
by an additive conservation law. But, however, we state 
them, these two facts are the outstanding dynamical 
peculiarities of photons and gravitons, which until now 
have been proven only under the a priori assumption of 
a gauge-invariant or generally covariant Lagrangian 
density. 

The representation of (&% on physical Hilbert space is 
determined solely by the first factor, so 

J7[(R] = exp(i©[(R]/8). (AS) 

In discussing the transformation rules for massless 
particles it is necessary to consider members of the little 
group defined by 

<R(q,A) - £rl (q)A~1£ (Aq). (A6) 

Here A is an arbitrary Lorentz transformation, and 
<£ (q) is the Lorentz transformation: 

£ \ ( q ) = jR",(fi)JB>,(|q|)l (A7) 

where B (| q |) is a "boost" along the z axis? with nonzero 
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APPENDIX A: POLARIZATION VECTORS 
AND THE LITTLE GROUP 

In this Appendix we shall discuss the "little group"2 

for massless particles, with the aim of defining the 
angle ©(q,A), and of determining the transformation 
properties of the polarization vectors €±(q). 

The little group is defined as consisting of all Lorentz 
transformations (R^, which leave invariant a standard 
light-like four-vector K*: 

mKv=K», (Al) 

# 1 = ^ 2 = 0 , KZ = K°=K>0. (A2) 

I t is a matter of simple algebra to show that the most 
general such (R"„ can be written as a function of three 
parameters ©, X1, X2: 

components 

Bh=B%=cosh<p, 

Bh=B°z=sinh<p, 

*>=log(MA), 
and R(q) is the rotation introduced in (2.4), which takes 
the z axis into the direction of q. The transformation 
<£(q) takes the standard four-momentum K^ [see (A2)] 
i n t o g * = { q , | q | } : 

£* \ , (q ) i ^=^ (A9) 
so therefore, 

(R",(q,A)iP= [ i r 1 (d)A~iyv(Aqy 

= C ^ ( q ) ] V = ^ . (MO) 

(R%= 

X2= 

cos® 
— sin© 

xx 
I Xx 
^i2+X2

2 

sin© 
cos© 
x 2 
x 2 

— Xicos©—X2sin© 
Xi sin©—X2 cos© 

l - X 2 / 2 
- X 2 / 2 

Xi cos©+X2 sin© 
-Xisin@+X2cos© 

X2/2 
l+X2/2 

(A3) 

(The rows and columns are in order 1, 2, 3, 0.) Wigner2 has noted that this group is isomorphic to the group of 
rotations (by angle ©) and translations (by vector {Xi,X2}) in the Euclidean plane. In particular the "transla­
tions" form an invariant Abelian subgroup, defined by the condition © = 0, and are represented on the physical 
Hilbert space by unity. I t is possible to factor any (ft"„ into 

(RV 

cos© sin© 0 0 
— sin© cos© 0 0 

0 0 1 0 
0 0 0 U 

1 0 - X i Xi 
0 1 - X 2 X2 

Xi X 2 l - X 2 / 2 X 2 /2 
LXi X2 - X 2 / 2 l + X 2 / 2 . 

(A4) 
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Hence (ft(q,A) does belong to the little group. 
I t was shown in Ref. 3 that, as a consequence of (A5), 

the S matrix obeys the transformation rule (2.1), with 
0(q,A) given as the © angle of (R(q,A): 

e(q,A) = ©[£-1(q)A-1i3(Aq)]. (Al l ) 

We now turn to the polarization "vectors" e±^(g), 
defined in Sec. I I by 

eM = R»M*±', (A12) 
€ ± " s { l , ± i , 0 , 0 } / V 2 . (A13) 

Observe that we could just as well write (A 12) as 

€±K?) = ^ ( q ) € ± v (A14) 

since B (| q |) has no effect on e±. 
An arbitrary (RM„ of the form (A3) will transform e±v 

into 

(RV± F =exp(±^@[(R])€ ± ^+X ± [ (R]^ , (A15) 

where 
Xi[(R]±iZ 2 [ (R] 

X±[(R] = -
KV2 

(A16) 

If we let (R be the transformation (A6), and use (A14), 
then (A 15) gives 

CJB-1(q)A-1>^(Aq) = e x p [ ± * e ( q A ) ] ^ 
+ X ± ( q , A ) i ^ , (A17) 

where 

*±(q,A) 

Xii£rl (q) A-x£ ( A q ^ d b ^ i r 1 (q)A~1£ (Aq)] 

*v2 
(A18) 

Multiplying (A 17) by £(q) , we have the desired result 

A/€±"(Aq) = e X p[±i©(q ,A)]6^(q)+X d b (q J A)^. (A19) 

Note that it is the "translations" which at the same 
time make the little group non-semi-simple, and which 
yield the gradient term in (A 19). 

The quantity X±(p,A) may be found in terms of 
e±(q) by setting fx—Q in (A19) : 

X ± ( q A ) I q | = A , V ( A q ) . (A20) 

Hence we may rewrite (A 19) as a homogeneous trans­
formation rule: 

( A / - A , V / | q | ) ^ ( A q ) = exp[±i@(q,A)]6±Kg) (A21) 

or, recalling that e±°=0, 

( A / - A^0«±*(Aq) - exp[=t=i@ (q,A)]e±'(<z). 

This also incidentally shows that ©(q,A) does not 
depend on | q | . 

We have not had to define the rotation R(q) any 
further than by just specifying that it carries the z axis 
into the direction of q. However, the reader may wish to 
see explicit expressions for the polarization vectors, so 
we will consider one particular standardization of R($). 
Write q in the form 

$ = { — sin/3 cosy, sin/3 siny, cos/3} (A22) 

and let R(q) be the rotation with Euler angles 0, /3, y: 

cos/3 cosy siny — sin/3 cosy 0"] 
— cos/3 siny cosy sin/3 siny 0 

sin/3 0 cos/3 0 
0 0 0 lJ 

R»v(q)~- (A23) 

Then (2.4) and (2.5) give 

€±M($) ~ { c o s £ cosy±i siny, 
— cos/3 s i n y i i cosy, sin/3, 0}/V2 

0*= 1,2, 3 ,0 ) . (A24) 

We can easily check (2.6)-(2.12) explicitly for (A24). 

APPENDIX B: CONSTRUCTION OF 
TENSOR AMPLITUDES 

We consider a reaction in which is emitted a massless 
particle of momentum q and integer helicitydz/, all other 
particle variables being collected in the single symbol p. 
Let us first divide the set of all possible {q,p} into dis­
joint equivalence classes, {q,p} being equivalent to 
{q',^'} if one can be transformed into the other by a 
Lorentz transformation. (This is an equivalence rela­
tion, because the Lorentz group is a group.) The axiom 
of choice allows us to make an arbitrary selection of one 
set of standard values {qc,pc} from each equivalence 
class, so any {q,p} determines a unique standard {qc,pc}, 
such that for some Lorentz transformation Z>„ we have 

q=Lqc, p=Lpc (Bl) 

I t will invariably be the case in physical processes that 
the only AM„ leaving both q and p invariant is the identity 
8% so the £"„ in (Bl) is uniquely determined by q and p. 
(This is true, for instance, if p stands for two or more 
general four-momenta.) Hence the arguments {q,p} 
stand in one-to-one relation to the variables {qc,pc,L}. 

Now let us construct an M^1"'^(qcJpc) satisfying 
(2.2) for each standard {qc,£c}. A suitable choice is 

M^- • - « ( q ^ c ) = (21 q. | ) * ' V & ) • • • « ± « « . ) 5 ^ ( q e > ^ ) , (B2) 

which satisfies (2.2) because of (2.6). The tensor amplitude for a general q, p is then defined by 

M^-M(q,p)^L»n(q,p) • • •2>', ,(q,#)Jf±F l-"(q. J#.) , (B3) 

where q„ pc, and L(q,p) are the standard variables and Lorentz transformation defined by (Bl) . With this definition 
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we can easily show that M^'-M is a tensor, because 

M±^-^(q,p) = L^n((i,P)" -LvVj(<i,p)LPHHAP)- •Lpf>XAqM)M±n''''i(Aq£p) 
= AP1«- • •ApfiM±n~'*i(Aq9Ap), (B4) 

the latter equality holding because L(q3p)L~1(AqyAp) induces the transformation {Aq,A^} —> {qCypc} —* {q,i>} and 
hence must be just A -1 . 

We must now show that (B.3) satisfies (2.2) for all {q,^}. The Lorentz transformation property (2.13) of e±
M 

can be written as 
€±*(g) = e x p { T ; 0 ( g , L - H q , ^ 

Hence, (B.3) gives 

X [ € ± " ( $ c ) - $ c " € ^ ^ (B5) 

But (B2) and (2.10) show that all q^ terms may be dropped, because 

^M M . . . M y (q c ,p c ) = 0, (B6) 
so (B5) simplifies to 

*±»l*%" ' ^ ^ M I . ^ - ^ ^ ( ^ ^ r . - M / C q c ^ c ) (B7) 

or, using (B2) and (2.6), 

( 2 | q | ) - V V * ( 4 ) ' • • e ± ' " *« ) i / l , l -« (q , ^ )= ( |q . | / |q | ) 1 / , exp{±»i©(a > L-Kq l #))}5 ± / ( g e ,# ( ) ) . (B8) 

The right-hand side is just the formula for S±j(q,p) 
obtained by setting A=L~1(q,p) in (2.1), so (B8) gives 
finally 

Xe^>*{g)M,v.;MS- (B9) 

I t should be noted that (B2) is not valid for all q, p, 
since then M±°^"'^'((l>p) would vanish in all Lorentz 
frames, and M± could hardly then be a tensor. 

APPENDIX C: (2/+l)-COMPONENT M FUNCTIONS 

I t has become customary5 to write the S matrix for 
massive particles of spin j in terms of 2^+1-component 
M functions, which transform under the 0,0) or (0J) 
representation of the homogeneous Lorentz group. In 
contrast, the symmetric-tensor M functions used here 
transform according to the 0 / 2 , j/2) representation. 
The massless-particle S matrix could also have been 
written in terms of a conventional (2j+l)-component 
M function, but only at the price of giving the M func­
tion a very peculiar pole structure. 

To see what sort of peculiarities can occur for zero 
mass, let us consider the emission of a very soft photon 
in a reaction like Compton scattering, in which there is 
only one charged particle in the initial state a and in the 
final state p. The ^-matrix element is then given by 

(4.4) as 
^ ± 1 ( q ) - ^ ( 2 7 r ) - 3 / 2 ( 2 | q | ) - ^ 

Xe - — - — — L*(0S , t t l (CI) 
Up-q) (P'-qU 

where p and p' are the initial and final charged-particle 
momenta. This may be rewritten as 

S < t a ±(q)->(2 |q | ) - i /W I # l . , ] (q ,a-» j8) 

X{q**e±»(q)-q»e±**(q)}, (C2) 

where M[M,,j is a (1,0)© (0,1) M function 
e\jPfP'v—pvp'v^\Spa 

Jf[„.r](q,a-»|8) = . (C3) 

I t can be shown that S ^ and Spa~ receive contribu­
tions, respectively, only from the self-dual and anti-
self-dual parts of M"[M,„], which transform according to 
the three-component (0,1) and (1,0) representations. 
But (C3) shows that these conventional M functions 
have a double pole, arising simultaneously from the in­
coming and outgoing charged particle propagators. This 
singularity is partly kinematic, since the S matrix (CI) 
involves a sum of single poles, but certainly no double 
pole. The presence of kinematic singularities in Af[M(V] 
makes it an inappropriate covariant photon amplitude. 
Similar remarks apply to gravitons, but not to any 
other massless particles like the neutrino, for which 
there is no analog to charge. 


